Critical current density in highly biaxially-oriented YBCO films: Can we control J/sub c/(77 K) and optimize up to more than 10/sup 6/ amp/cm/sup 2/?

1999 
High-J/sub c/ YBCO conductors of the second generation are based on processing of YBCO highly-textured film, It is important to develop deposition techniques to control and optimize flux pinning in such films. The dominant contribution to net pinning force in YBCO films is from the growth-induced dislocations. The average density of such dislocations in low-angle tilt domain boundaries can exceed 10/sup 11//cm/sup 2/. For 2D fluxline lattice (FLL) correlated disorder induced by linear defects, a simplified approach is proposed to get some optimization criteria for the critical current density as a function of domain size, misorientation angle, etc. During YBCO films deposition onto highly-textured buffer layers growth dislocation structures can be varied, Comparison of the high-resolution transmission electron microscopy (HREM) data and J/sub c/(H) angular dependencies for CeO/sub 2/-buffered YBCO films exhibit how the dislocation distribution can affect the angular J/sub c/(H) behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    3
    Citations
    NaN
    KQI
    []