Kinetic characterization of a cocaine hydrolase engineered from mouse butyrylcholinesterase.

2015 
Mouse butyrylcholinesterase (mBChE) and an mBChE-based cocaine hydrolase (mCocH, i.e. the A 199 S/S 227 A/S 287 G/A 328 W/Y 332 G mutant) have been characterized for their catalytic activities against cocaine, i.e. naturally occurring (−)-cocaine, in comparison with the corresponding human BChE (hBChE) and an hBChE-based cocaine hydrolase (hCocH, i.e. the A 199 S/F 227 A/S 287 G/A 328 W/Y 332 G mutant). It has been demonstrated that mCocH and hCocH have improved the catalytic efficiency of mBChE and hBChE against (−)-cocaine by ~8- and ~2000-fold respectively, although the catalytic efficiencies of mCocH and hCocH against other substrates, including acetylcholine (ACh) and butyrylthiocholine (BTC), are close to those of the corresponding wild-type enzymes mBChE and hBChE. According to the kinetic data, the catalytic efficiency ( k cat /K M ) of mBChE against (−)-cocaine is comparable with that of hBChE, but the catalytic efficiency of mCocH against (−)-cocaine is remarkably lower than that of hCocH by ~250-fold. The remarkable difference in the catalytic activity between mCocH and hCocH is consistent with the difference between the enzyme–(−)-cocaine binding modes obtained from molecular modelling. Further, both mBChE and hBChE demonstrated substrate activation for all of the examined substrates [(−)-cocaine, ACh and BTC] at high concentrations, whereas both mCocH and hCocH showed substrate inhibition for all three substrates at high concentrations. The amino-acid mutations have remarkably converted substrate activation of the enzymes into substrate inhibition, implying that the rate-determining step of the reaction in mCocH and hCocH might be different from that in mBChE and hBChE.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    14
    Citations
    NaN
    KQI
    []