A performance-optimized model of neural responses across the ventral visual stream

2016 
Human visual object recognition is subserved by a multitude of cortical areas. To make sense of this system, one line of research focused on response properties of primary visual cortex neurons and developed theoretical models of a set of canonical computations such as convolution, thresholding, exponentiating and normalization that could be hierarchically repeated to give rise to more complex representations. Another line or research focused on response properties of high-level visual cortex and linked these to semantic categories useful for object recognition. Here, we hypothesized that the panoply of visual representations in the human ventral stream may be understood as emergent properties of a system constrained both by simple canonical computations and by top-level, object recognition functionality in a single unified framework (Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Guclu and van Gerven, 2015). We built a deep convolutional neural network model optimized for object recognition and compared representations at various model levels using representational similarity analysis to human functional imaging responses elicited from viewing hundreds of image stimuli. Neural network layers developed representations that corresponded in a hierarchical consistent fashion to visual areas from V1 to LOC. This correspondence increased with optimization of the model's recognition performance. These findings support a unified view of the ventral stream in which representations from the earliest to the latest stages can be understood as being built from basic computations inspired by modeling of early visual cortex shaped by optimization for high-level object-based performance constraints.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    13
    Citations
    NaN
    KQI
    []