Simultaneous Enhancement of Efficiency and Stability of Phosphorescent OLEDs Based on Efficient Förster Energy Transfer from Interface Exciplex

2016 
Exciplex forming cohosts have been widely adopted in phosphorescent organic light-emitting diodes (PHOLEDs), achieving high efficiency with low roll-off and low driving voltage. However, the influence of the exciplex-forming hosts on the lifetimes of the devices, which is one of the essential characteristics, remains unclear. Here, we compare the influence of the bulk exciplex and interface exciplex on the performances of the devices, demonstrating highly efficient orange PHOLEDs with long lifetime at low dopant concentration by efficient Forster energy transfer from the interface exciplex. A bipolar host, (3′-(4,6-diphenyl-1,3,5-triazin-2-yl)-(1,1′-biphenyl)-3-yl)-9-carbazole (CzTrz), was adopted to combine with a donor molecule, tris(4-(9H-carbazol-9-yl)phenyl)amine (TCTA), to form exciplex. Devices with energy transfer from the interface exciplex achieve lifetime almost 2 orders of magnitude higher than the ones based on bulk exciplex as the host by avoiding the formation of the donor excited states. M...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    81
    Citations
    NaN
    KQI
    []