Fault Diagnosis For Gearbox Based On Deep Belief Network

2019 
As equipment becomes more and more complex, it is increasingly difficult to manually extract and select fault features manually based on expert experience or signal processing techniques. In addition, the shallow model such as BP neural network and SVM have trouble to deal with the complex mapping relationship with respect to the measured signal and the health condition of the equipment, who faces the problem of dimensional disaster. Combined with the advantages of deep confidence network (DBN) in features extraction and deal with high-dimensional and nonlinear samples, a fault feature extraction and diagnosis method based on deep confidence network for gearbox is investigated in this framework. The method uses the original time domain signal to train the deep confidence network and completes the intelligent diagnosis through deep learning. The preponderance is that it can take out the dependence on a great quantity of signal processing techniques and diagnostic experience, and accomplish the extraction of fault features and the intelligent diagnosis of health status with the characteristic of self-adaption. The method has no periodic requirements for time domain signals, and has strong versatility and adaptability. The experimental results of the fault diagnosis for the planetary gearbox demonstrated the feasibility and superiority of the presented method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []