Enhanced Stability of the Carba-closo-dodecaborate Anion for High-Voltage Battery Electrolytes through Rational Design

2018 
Future energy applications rely on our ability to tune liquid intermolecular interactions and achieve designer electrolytes with highly optimized properties. In this work, we demonstrate rational, combined experimental–computational design of a new carba-closo-dodecaborate-based salt with enhanced anodic stability for Mg energy storage applications. We first establish, through a careful examination using a range of solvents, the anodic oxidation of a parent anion, the carba-closo-dodecaborate anion at 4.6 V vs Mg0/2+ (2.0 vs Fc0/+), a value lower than that projected for this anion in organic solvent-based electrolytes and lower than weakly associating bis(trifluoromethylsulfonyl)imide and tetrafluoroborate anions. Solvents such as acetonitrile, 3-methylsulfolane, and 1,1,1,3,3,3-hexafluoroisopropanol are shown to enable the direct measurement of carba-closo-dodecaborate oxidation, where the resultant neutral radical drives passive film formation on the electrode. Second, we employ computational screening ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    44
    Citations
    NaN
    KQI
    []