Investigating the Failure Behaviors of RC Beams Without Stirrups under Impact Loading

2019 
Abstract This study visualizes the evolution of crack patterns for simply-supported RC beams under static and impact loadings using the techniques of DIC and high-speed camera. At relatively low impact velocity, we observe multiple flexural cracks developing in a progressive sequence from mid-span to supports. At relatively high impact velocity, we observe a shear plug initiated at loading point during early time before impact response reaching supports. The critical velocity for transition from flexural- to shear-failure mode varies from 6.9 to 8.4 m/s. Comparative analysis suggests the impact resistance is related to failure modes: The maximum impact force is controlled by global resistance of structure at flexural-failure mode, while it is controlled by local failure of materials at shear-failure mode. Finally, this study compares absorbed energy with impact velocity at flexural- and shear-failure modes. By increasing impact velocity, the results show that absorbed energy increases at flexural-failure mode, and decreases at shear-failure mode. The decreasing absorbed energy capacity is possibly caused by less plastic deformation of steel reinforcements in a more concentrated zone of shear plug at shear-failure mode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    12
    Citations
    NaN
    KQI
    []