The effect of intrinsic image memorability on recollection and familiarity.

2020 
Many photographs of real-life scenes are very consistently remembered or forgotten by most people, making these images intrinsically memorable or forgettable. Although machine vision algorithms can predict a given image’s memorability very well, nothing is known about the subjective quality of these memories: are memorable images recognized based on strong feelings of familiarity or on recollection of episodic details? We tested people’s recognition memory for memorable and forgettable scenes selected from image memorability databases, which contain memorability scores for each image, based on large-scale recognition memory experiments. Specifically, we tested the effect of intrinsic memorability on recollection and familiarity using cognitive computational models based on receiver operating characteristics (ROCs; Experiment 1 and 1) and on remember/know (R/K) judgments (Experiment 1). The ROC data of Experiment 1 indicated that image memorability boosted memory strength, but did not find a specific effect on recollection or familiarity. By contrast, ROC data from Experiment 1, which was designed to facilitate encoding and, in turn, recollection, found evidence for a specific effect of image memorability on recollection. Moreover, R/K judgments showed that, on average, memorability boosts recollection rather than familiarity. However, we also found a large degree of variability in these judgments across individual images: some images actually achieved high recognition rates by exclusively boosting familiarity rather than recollection. Together, these results show that current machine vision algorithms that can predict an image’s intrinsic memorability in terms of hit rates fall short of describing the subjective quality of human memories.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    4
    Citations
    NaN
    KQI
    []