Lagrangian Floer theory for trivalent graphs and homological mirror symmetry for curves

2021 
Mirror symmetry for higher genus curves is usually formulated and studied in terms of Landau-Ginzburg models; however the critical locus of the superpotential is arguably of greater intrinsic relevance to mirror symmetry than the whole Landau-Ginzburg model. Accordingly, we propose a new approach to the A-model of the mirror, viewed as a trivalent configuration of rational curves together with some extra data at the nodal points. In this context, we introduce a version of Lagrangian Floer theory and the Fukaya category for trivalent graphs, and show that homological mirror symmetry holds, namely, that the Fukaya category of a trivalent configuration of rational curves is equivalent to the derived category of a non-Archimedean generalized Tate curve.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    0
    Citations
    NaN
    KQI
    []