Deriving water quality criteria for trivalent and pentavalent arsenic

2017 
Abstract Arsenic (As) is a common trace element whose oxidation states mainly include four types (− 3, 0, + 3, and + 5), and inorganic As(III) and As(V) are regarded as the most commonly existing forms in aqueous environments. Generally, As(III) has a higher toxicity than As(V) due to the different mechanisms in arsenic toxicity. However, there are few studies about the water quality criteria (WQC) of As(III) and As(V) respectively because of the deficiency of arsenic toxicity data coming from diverse taxonomic groups. In this research, eight native Chinese aquatic organisms were adopted to conduct toxicity tests for As(III) and As(V) to supplement the published toxicity data. The species sensitivity distribution (SSD) method on the basis of the Log-normal model which was the most optimal among eight models was applied to derive WQCs of As(III) and As(V). Results showed that crustaceans were the most sensitive to As(III) and As(V) among all tested species, thus they could be a biological indicator, and the influence of pH values on arsenic toxicity was complex and species-specific. Besides, the sensitivity differences between native and non-native species were observed. Finally, a criterion maximum concentration (CMC) of 167 and 384 μg/L for As(III) and As(V), and a criterion continuous concentration (CCC) of 42 and 44 μg/L for As(III) and As(V) were derived using native species, regardless of pH values. The WQCs were also verified by other two methods of ETX 2.0 and species sensitivity rank.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    15
    Citations
    NaN
    KQI
    []