PMC-Turbo: a balloon-borne Mission to image gravity waves and turbulence in polar mesospheric clouds

2017 
PMC-Turbo is a balloon-borne experiment that will fly at an altitude between 35 and 40 km. It is designed to record gravity wave events in polar mesospheric clouds with high spatial and temporal resolution as they unfold across a large field of the sky. The project is motivated by the serendipitous observation of PMCs during the balloon flight of EBEX, an observational cosmology experiment which flew in 2013 at an altitude of about 35 km. EBEX included two star cameras, each of which had a field of view of 4 by 3 degrees, a resolution of 2.5 m at 80 km altitude, and an image cadence of 30 seconds. Even though EBEX was not designed to observe PMCs, instability and turbulent structures were visible with features at scales down to 20 m in the star camera images. However, it is difficult to put the images in context due to the inconsistent pointing, slow image cadence, and the narrow field of view. PMC-Turbo was designed leverage the strengths of the EBEX star cameras to observe gravity wave events at various length scales. This requires capturing a wide view while remaining sensitive to small features, as well as recording images at a high cadence. It carries seven cameras, four of which are wide field cameras that together cover a field of view of about 150 by 40 degrees with an 8 m per pixel resolution. Cameras with narrow field lenses provide smaller fields of view of 10 by 15 degrees with about 3 m per pixel resolution and are situated within in the larger field of view. The cameras can sustain 3.5 frames per second and can capture bursts of images up to 8 frames per second. The payload also carries BOLIDE, a Rayleigh lidar from the DLR Institute of Atmospheric Physics and an airglow camera from Utah State University. These instruments will provide additional context to observed events in the form of thermal profiles and infrared mapping. The Balloon Lidar Experiment BOLIDE is a miniaturized Rayleigh backscatter lidar developed for PMC-Turbo that will provide observations of PMC with unprecedented resolution and signal to noise ratio. PMC-Turbo is scheduled to fly next year from either Sweden or Antarctica. We anticipate a fourteen day flight over Antarctica, and we expect to capture about 14 million images. An arctic flight would last around 5 days, but we anticipate several gravity wave events during this time. In addition to lab testing of our equipment, we have had opportunities to collect data with the PMC-Turbo instruments in the field. This December we will fly one camera as a piggyback on the Super Tiger payload from Antarctica. In July, we used several cameras on the ground to capture PMC images in High Level, Alberta. We hope to resolve tomography from the images captured during that campaign. If we fly from Sweden, we plan to coordinate ground-based tomographic imaging with the balloon flight.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []