Future Radio Access, Wi-Fi-LTE, LTE-Advanced: The Path to 5G

2017 
With the proliferation of IP-based bandwidth-intensive video services and smartphones, there has been an unprecedented exponential increase in mobile broadband data. This has resulted in increasing demand for additional wireless capacity. In order to increase the wireless capacity multifold, the next-generation radio access networks (RAN) boast of a number of sophisticated technologies, such as Carrier Aggregation (CA), Evolved-Multicast/Broadcast Multimedia Services (eMBMS) using Single-Frequency Networks (SFN), enhanced Inter-Cell Interference Coordination (eICIC) in self-organized Heterogeneous Networks (HetNets), Coordinated Multi-Point (CoMP) transmission in Multiple-Input–Multiple-Output (MIMO) systems using 2D/3D Beamforming, and full-duplex communication. Some of the above technologies are standardized in 3GPP Release 10+ systems like LTE-Advanced and are seen as a roadmap to 5G RANs. This chapter provides a comprehensive overview of each of these technologies and surveys the key open issues concerning them in terms of radio resource management (RRM) to facilitate maximum wireless capacity and provide Quality-of-Service (QoS) to the users. It also explores the synergies between these technologies towards developing holistic optimization techniques for the design of 4G+ and 5G systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []