Boundedness and stabilization of solutions to a chemotaxis May–Nowak model
2021
The chemotaxis May–Nowak model $$\begin{aligned} \left\{ \begin{array}{llll} u_t=D_u \Delta u-\nabla \cdot (uf\left( u\right) \nabla v)-g\left( u\right) w+r-u, &{}x\in \Omega ,\quad t>0,\\ v_t=D_v \Delta v+g\left( u\right) w-v, &{}x\in \Omega ,\quad t>0,\\ w_t=D_w \Delta w+v-w, &{}x\in \Omega ,\quad t>0, \end{array} \right. \end{aligned}$$
is considered in a bounded domain $$\Omega \subset \mathbb {R}^n (n\ge 1)$$
with homogeneous Neumann boundary conditions and the parameters $$D_u,D_v,D_w,r>0$$
. The chemotactic sensitivity function and the conversion function are given by $$f\left( s\right) =K_{f}\left( 1+s\right) ^{-\alpha }$$
and $$g(s) = K_{g} s^{\beta }$$
for all $$s > 0$$
, respectively, where $$K_{f}\in \mathbb {R}$$
, $$K_{g}, \alpha , \beta >0$$
. The global boundedness of solution is shown if the following case holds: $$\begin{aligned} \begin{aligned} \alpha > \max \left\{ \frac{n\beta }{4}, \frac{\beta }{2}, \frac{n(n+2)}{6n+8}\beta +\frac{1}{2} \right\} . \end{aligned} \end{aligned}$$
Moreover, for the large time behavior of the global smooth bounded solution, the basic reproduction number $$R_{0}:=K_{g}r^{\beta }$$
has an important effect (Lai and Zou in Bull Math Biol 76:2806-2833, 2014; Wang et al. in Nonlinear Anal RWA 33:253-283, 2017), and system has the infection-free steady state if $$01$$
(Korobeinikov in Bull Math Biol 66:879-883, 2004). By constructing an appropriate energy function, under the conditions that $$K_f$$
and $$K_g$$
are appropriately mild, it is shown that: $$\bullet $$
If $$R_0\in (0,1)$$
, then any global bounded solution converges to $$\left( r, 0, 0\right) $$
as $$t\rightarrow \infty $$
; $$\bullet $$
If $$R_0\in (1,\infty )$$
, $$\beta =1$$
, then any global bounded solution converges to $$\bigg ( \frac{1}{K_g}, r-\frac{1}{K_g}, r-\frac{1}{K_g} \bigg )$$
as $$t\rightarrow \infty $$
.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
0
Citations
NaN
KQI