Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities

2020 
Abstract Hydrothermal carbonization (HTC)/liquefaction (HTL)/gasification (HTG) are promising processes for biofuel production from biomass containing high moisture. However, wastewater, the aqueous phase (AP) byproduct from these hydrothermal processes, is inevitably produced in large amounts. The AP contains more than 20% of the biomass carbon, and the total organic carbon in AP is as high as 10–20 g/L. The treatment and utilization of AP are becoming a bottleneck for the industrialization of hydrothermal technologies. The major challenges are the presence of various inhibitory substances and the high complexity of AP. Bioenergy recovery from AP has attracted increasing interest. In the present review, the compositions and characteristics of AP are first presented. Then, the progress in recovering bioenergy from AP by recirculation as the reaction solvent, anaerobic digestion (AD), supercritical water gasification (SCWG), microbial fuel cell (MFC), microbial electrolysis cell (MEC), and microalgae cultivation is discussed. Recirculation of AP as reaction solvent is preferable for AP from biomass with relatively low moisture; AD, MFC/MEC, and microalgae cultivation are desirable for the treatment of AP produced from processing biomass with low lignin content at relatively low temperatures; SCWG is widely applicable but is energy-intensive. Finally, challenges and corresponding strategies are proposed to promote the development of AP valorization technologies. Comprehensive analysis of AP compositions, clarification of the mechanisms of valorization processes, valorization process integration detoxification of AP, polycultures and co-processing of AP with other waste, enhancement in pollutant removal, scaling-up performance, and the techno-economic analysis and life-cycle assessment of valorization systems are promising directions in future investigations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    210
    References
    18
    Citations
    NaN
    KQI
    []