Soil chemistry, elemental profiles and elemental distribution in nickel hyperaccumulator species from New Caledonia

2020 
Aims: This study aimed to establish elemental profiles and to spatially resolve the elemental distribution in five New Caledonian woody Ni hyperaccumulator plant species (Geissois pruinosa var. pruinosa, Homalium francii, Hybanthus austrocaledonicus, Psychotria gabriellae, and Pycnandra acuminata) originating from the Cunoniaceae, Salicaceae, Violaceae, Rubiaceae, and Sapotaceae families respectively. Methods: Using synchrotron-based micro-X-ray Fluorescence (μXRF) imaging of different plant tissues, from the roots to the shoots and reproductive organs, this study aimed to clarify how distribution patterns of nickel, and other physiologically relevant elements, differ between these species. Results: The results show that the tissue-level and cellular-level distribution of nickel in P. gabriellae, H. austrocaledonicus, G. pruinosa var. pruinosa, and H. francii conform with the majority of studied Ni hyperaccumulator plant species globally, including (temperate) herbaceous species, with localization mainly in epidermal cells and phloem bundles. However P. acuminata has nickel-rich laticifers, which constitute an independent network of cells that is parallel to the vascular bundles and are the main sink for nickel. Conclusions: Synchrotron-based micro-X-ray Fluorescence (μXRF) is a powerful method for investigating how metal hyperaccumulation influences acquisition and spatial distribution of a wide range of elements. This non-invasive method enables investigation into the in vivo distribution of multiple elements and the structure and organisation of cells (e.g. laticifers).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    2
    Citations
    NaN
    KQI
    []