Saccade target selection relies on feedback competitive signal integration

2013 
It is often assumed that decision making involves neural competition, accumulation of evidence "scores" over time, and commitment to a particular alternative once its scores reach a critical decision threshold first. So far, however, neither the first-to-threshold rule nor the nature of competition (feedforward or feedback inhibition) has been revealed by experiments. Here, we presented two simultaneously flashed targets that reversed their intensity difference during each presentation and instructed human subjects to make a saccade toward the brightest target. All subjects preferentially chose the target that was brightest during the first stimulus phase. Unless this first phase lasted only 40 ms, this primacy effect persisted even if the second, reversed-intensity phase lasted longer. This effect did not result from premature commitment to the initially dominant target, because a strong target imbalance in the opposite direction later drove nearly all responses toward that location. Moreover, there was a nonmonotonic relation between target imbalance and primacy: increasing the target imbalance beyond 40 cd/m(2) caused an attenuation of primacy. These are the hallmarks of hysteresis, predicted by models in which target representations compete through strong feedback. Reaction times were independent of the choice probability. This dissociation suggests that target selection and movement initiation are distinct phenomena.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    4
    Citations
    NaN
    KQI
    []