Molecular dynamic analysis of mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to γ-cyclodextrin

2015 
Alpha-cyclodextrin (α-CD) glycosyltransferase (α-CGTase) can convert starch into α-CD blended with various proportions of β-cyclodextrin (β-CD) and/or γ-cyclodextrin (γ-CD). In this study, we verified the catalytic characteristics of purified Y195I α-CGTase and elucidated the mechanism of action with molecular dynamic (MD) simulations. We found that purified Y195I α-CGTase produced less α-CD, slightly more β-CD, and significantly more γ-CD than wild-type α-CGTase. Correspondingly, α-CD-based K m values increased, and β-CD- and γ-CD-based K m values decreased. MD simulation studies revealed that the dynamic trajectories of the substrate oligosaccharide chain in the mutant CGTase binding site were significantly different from those in the wild-type enzyme, with reduced hydrophobic interaction, finally resulting in different product specificity and more γ-CD formation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    4
    Citations
    NaN
    KQI
    []