The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: Evidence from a three-year field experiment

2021 
Abstract Conversion of sewage sludge (SS) into biochar through pyrolysis is an alternative to make this residue useful for agricultural purposes. Despite advances in interpreting the functions of SS biochar (SSB) for improving soil quality, it is still necessary to understand its residual effect on the dynamics of heavy metals (HM), especially under field conditions in tropical soils. Therefore, the objective of this study was to evaluate the residual effect of the application of SSB obtained at different pyrolysis temperatures on the accumulation, availability and bioaccumulation of HMs by corn cultivated in a tropical soil. For this purpose, a field experiment was conducted for three years to assess the total and available levels of HMs in the soil and the leaf concentration after suspending the application of 30 t ha−1 of SSB produced at 300 °C (BC300) and 500 °C (BC500). In general, the HM contents were below the maximum allowed by environmental legislation in several countries. SSB, regardless of temperature, was effective in immobilizing non-essential HMs for plants, such as Cd, Co, Cr and Pb, in the soil. On the other hand, SSB was able to supply micronutrients to corn plants after amendment ceased. Thus, the lack of negative long-term effects confirms the feasibility and safety of using SSB in agricultural areas with regards to contamination by HM, and makes it an alternative for the disposal of domestic SS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    7
    Citations
    NaN
    KQI
    []