Unique decay process: β-delayed emission of a proton and a neutron by the 11Li halo nucleus
2010
The neutron-rich {sup 11}Li halo nucleus is unique among nuclei with known separation energies in its ability to emit a proton and a neutron in a {beta}-decay process. The branching ratio toward this rare decay mode is evaluated within a three-body model for the initial bound state and with Coulomb three-body final scattering states. The branching ratio should be comprised between two extreme cases, i.e., a lower bound 6x10{sup -12} obtained with a pure Coulomb wave and an upper bound 5x10{sup -10} obtained with a plane wave. A simple model with modified Coulomb waves provides plausible values between 0.8x10{sup -10} and 2.2x10{sup -10}, with most probable total energies of the proton and neutron between 0.15 and 0.3 MeV.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
3
Citations
NaN
KQI