Biohydrogen production by co-fermentation of antibiotic fermentation residue and fallen leaves: Insights into the microbial community and functional genes

2021 
Abstract This investigation explored the co-fermentation of antibiotic fermentation residue (AFR) and fallen leaves for enhancing biohydrogen production, and analyzed the mechanism from the aspects of microbial activity, microbial community and functional genes. The results showed that the optimal mixing ratio of AFR to leaves was 25:75 (VS basis), which balanced the substrate condition and synergistically enhanced the biohydrogen productivity, and the hydrogen yield was 37.45 mL/g-VSadded, which was 438.8% and 9.2% higher compared to the sole AFR fermentation and the sole leaves fermentation, respectively. The co-fermentation also improved the organics utilization and induced a more effective metabolic pathway. Further microbiology analysis found that the co-fermentation promoted the microbial activity, enriched more hydrogen-producing bacteria (Clostridium sensu stricto 1), and enhanced the expression of hydrogen-producing functional genes (e.g. genes encoding ferredoxin hydrogenase (EC 1.12.7.2) and pyruvate-ferredoxin oxidoreductase (EC 1.2.7.1)), which were fundamentally responsible for the synergistic biohydrogen fermentation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    2
    Citations
    NaN
    KQI
    []