Active-learning for Physics (Electromagnetism) teachers in an Engineering Course

2015 
Students of Engineering have difficulties in the assimilation of the concepts explored in Electromagnetism and Waves. These difficulties begin with a lack of abstraction, especially when seeking to understand the Electromagnetism concepts. Many active learning methodologies and cases are presented in the literature for Classical Mechanics, but there are few references to Electromagnetism and Waves. This study presents a PBL—Problem Based Learning and a Project Based Learning—practice which was applied to a large class (25 students) and replicated for a thousand student universe in an annual university physics class. In the Problem Based Learning approach, each semester, four students teams received, contextualized scripts (with problems for which they were required to conduct simulations and provide conceptual analysis) (see example in the Appendix); at the end of each semester, they presented their results in an oral presentation and had an oral evaluation test. In Project Based Learning approach, at the end of the academic year, the same teams worked together on a final open project using electromagnetics concepts (project, construct, and evaluate an electromagnetic crane with open specifications) and participated in a competition. The active learning development pedagogical process was used to allow students to have a better understanding of physical phenomenon, in addition to developing scientific thought to allow for suitable modeling, simulation, and analysis, without only doing mathematical deductions with no understanding of Real Physics. The evaluation of the learning process was done using a closeand open-ended questionnaire survey completed by the students at the end of the semester. Students, using a blind process, had the opportunity to evaluate how the proposed activities allowed them to achieve a better understanding of the physical concepts, such as if this increased their motivation for engineering, if the amount of time available to solve problems was adequate, if the support provided for the development of the work (infrastructure and service teachers) was used, and any suggestions they had for improvement. The survey results revealed that the students’ perception of their understanding increased, with approximately 70% of students approving of the new pedagogical proposal. This same idea could be easily applied in other engineering schools by adapting the contextualized scripts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []