SPECT assay of radiolabeled monoclonal antibodies. Progress report, September 1, 1992--August 24, 1993

1993 
The overall goal of this project is to improve the effectiveness of single photon emission computed tomography (SPECT) to image and quantify radiolabeled monoclonal antibodies. During the past year, we have made significant progress toward this goal, and this report summarizes that work. Our efforts have been mainly directed along three fronts. First, we have developed and tested new reconstruction methods including three-dimensional iterative algorithms that model non-uniform attenuation and distance-dependent detector response. Both fan beam and parallel beam collimator geometries have been modeled and novel ways of improving the efficiency of the computationally intensive methods have been introduced. Second, an ultra-high resolution, small field-of-view pinhole collimator has been constructed and evaluated. Reconstructed spatial resolution of 1 to 3 mm (FWHM) has been achieved in phantom scans with a useful field-of-view of 9 to 10 cm. Finally, we have investigated the ability of SPECT to image and quantify astatine-211 distributions. Reconstructed images of phantom data demonstrated quantitative accuracy to within 10% with proper attenuation and scatter compensation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []