Universal trends of post-duplication evolution revealed by the genomes of 13 Paramecium species sharing an ancestral whole-genome duplication

2019 
Abstract Whole-Genome Duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods and the relative contributions of different selective pressures to their maintenance is still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the P. aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and one additional outgroup, allowing us to track post-WGD evolution in 13 species that share a common ancestral WGD. We found similar biases in gene retention compatible with dosage constraints playing a major role opposing post-WGD gene loss across all 13 species. Interestingly we found that post-WGD gene loss was slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium . We also report a lack of recent segmental duplications in Paramecium , which we interpret as additional evidence for strong selective pressures against individual genes dosage changes. Finally, we hope that this exceptional dataset of 13 species sharing an ancestral WGD and two closely related outgroup species will be a useful resource for future studies and will help establish Paramecium as a major model organism in the study of post-WGD evolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    8
    Citations
    NaN
    KQI
    []