A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complex

2021 
Frequent outbreaks of novel coronaviruses (CoVs), highlighted by the current SARS-CoV-2 pandemic, necessitate the development of therapeutics that could be easily and effectively administered world-wide. The conserved mRNA-capping process enables CoVs to evade their host immune system and is a target for antiviral development. Nonstructural protein (nsp) 16 in complex with nsp10 catalyzes the final step of coronaviral mRNA-capping through its 2-O-methylation activity. Like other methyltransferases, SARS-CoV-2 nsp10-nsp16 complex is druggable. However, the availability of an optimized assay for high-throughput screening (HTS) is an unmet need. Here, we report the development of a radioactivity-based assay for methyltransferase activity of nsp10-nsp16 complex in a 384-well format, and kinetic characterization, and optimization of the assay for HTS (Z'-factor: 0.83). Considering the high conservation of nsp16 across known CoV species, the potential inhibitors targeting SARS-CoV-2 nsp10-nsp16 complex may also be effective against other emerging pathogenic CoVs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []