Trail-Traced Threshold Test (T4) with a Weighted Binomial Distribution for a Psychophysical Test.

2021 
Clinical visual field testing is performed with commercial perimetric devices and employs psychophysical techniques to obtain thresholds of the differential light sensitivity (DLS) at multiple retinal locations. Current thresholding algorithms are relatively inefficient and tough to get satisfied test accuracy, stability concurrently. Thus, we propose a novel Bayesian perimetric threshold method called the Trail-Traced Threshold Test (T4), which can better address the dependence of the initial threshold estimation and achieve significant improvement in the test accuracy and variability while also decreasing the number of presentations compared with Zippy Estimation by Sequential Testing (ZEST) and FT. This study compares T4 with ZEST and FT regarding presentation number, mean absolute difference (MAD between the real Visual field result and the simulate result), and measurement variability. T4 uses the complete response sequence with the spatially weighted neighbor responses to achieve better accuracy and precision than ZEST and FT and with significantly fewer stimulus presentations. T4 is also more robust to inaccurate initial threshold estimation than other methods, which is an advantage in subjective methods, such as in clinical perimetry. This method also has the potential for use in other psychophysical tests.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []