Electromagnetic dressing of the electron energy spectrum of Au(111) at high momenta

2020 
Light-engineering of quantum materials via electromagnetic dressing is considered an on-demand approach for tailoring electronic band dispersions and even inducing topological phase transitions. For probing such dressed bands, photoemission spectroscopy is an ideal tool, and we employ here a novel experiment based on ultrafast photoemission momentum microscopy. Using this setup, we measure the in-plane momentum-dependent intensity fingerprints of the electromagnetically-dressed sidebands from a Au(111) surface for s- and p-polarized infrared driving. We find that at metal surfaces, due to screening of the driving laser, the contribution from Floquet-Bloch bands is negligible, and the dressed bands are dominated by the laser-assisted photoelectric effect. Also, we find that in contrast to general expectations, s-polarized light can dress free-electron states at large photoelectron momenta. Our results show that the dielectric response of the material must carefully be taken into account when using photoemission for the identification of light-engineered electronic band structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []