Accessibility and external versus intercalative binding to DNA as assessed by oxygen-induced quenching of the palladium(II)-containing cationic porphyrins Pd(T4) and Pd(tD4).

2014 
Studies reveal that it is possible to design a palladium(II)-containing porphyrin to bind exclusively by intercalation to double-stranded DNA while simultaneously enhancing the ability to sensitize the formation of singlet oxygen. The comparisons revolve around the cations [5,10,15,20-tetra(N-methylpyridinium-4-yl)porphyrin]palladium(II), or Pd(T4), and [5,15-di(N-methylpyridinium-4-yl)porphyrin]palladium(II), or Pd(tD4), in conjunction with A═T and G≡C rich DNA binding sequences. Methods employed include X-ray crystallography of the ligands as well as absorbance, circular dichroism, and emission spectroscopies of the adducts and the emission from singlet oxygen in solution. In the case of the bulky Pd(T4) system, external binding is almost as effective as intercalation in slowing the rate of oxygen-induced quenching of the porphyrin’s triplet excited state. The fractional efficiency of quenching by oxygen nevertheless approaches 1 for intercalated forms of Pd(tD4), because of intrinsically long triplet l...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    17
    Citations
    NaN
    KQI
    []