C–O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides

2020 
Selective C–O activation of multifunctional molecules is essential for many important chemical processes. Although reducible metal oxides are active and selective towards reductive C–O bond scission via the reverse Mars–van Krevelen mechanism, the most active oxides undergo bulk reduction during reaction. Here, motivated by the enhanced oxide reducibility by metals, we report a strategy for C–O bond activation by doping the surface of moderately reducible oxides with an ultralow loading of noble metals. We demonstrate the principle using highly dispersed Pt anchored onto TiO2 for furfuryl alcohol conversion to 2-methylfuran. A combination of density functional theory calculations, catalyst characterization (scanning transmission electron microscopy, electron paramagnetic resonance, Fourier-transform infrared spectroscopy and X-ray absorption spectroscopy), kinetic experiments and microkinetic modelling expose substantial C–O activation rate enhancement, without bulk catalyst reduction or unselective ring hydrogenation. A methodology is introduced to quantify various types of sites, revealing that the cationic redox Pt on the TiO2 surface is more active than metallic sites for C–O bond activation. Reducible metal oxides selectively catalyse the hydrodeoxygenation of C–O bonds in bio-based aromatic molecules, although they show limited performance. Now, using TiO2 as an example, a method is reported to enhance the activity of the oxide by surface doping with an ultralow loading of Pt.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    37
    Citations
    NaN
    KQI
    []