Process, Circuit and System Co-optimization of Wafer Level Co-Integrated FinFET with Vertical Nanosheet Selector for STT-MRAM Applications.

2019 
We present for the first time a co-integrated FinFET with vertical nanosheet transistor (VFET) process on a 300 mm silicon wafer for STT-MRAM applications and its related avenues with a holistic design-technology-co-optimization (DTCO) and power-performance-area-cost (PPAC) approach. The STT-MRAM bitcell and a 2 Mbit macro have been optimized and designed to address the viability of the co-integration process and advantages of vertical channel transistors for STT-MRAM selectors. An architectural system simulator GEM5 has been also employed with Polybench workloads to assess energy saving at system-level. In order to enable this co-integration, four extra masks are required, which costs below 10% in embedded chips. A 36% area reduction can be achieved for the STT-MRAM bitcell implemented with VFET selectors. With a UVLT flavor, the STT-MRAM bitcell comprising of 3-nanosheet could deliver the same performance of the 4-fin LVT FinFET selector. A 2 Mbit STT-MRAM macro designed with VFET selector can offer a 17% and a 21% reduction for read access latency and energy per operation respectively, and a 10% for write energy per operation. A 7% energy saving for the STT-MRAM L2 cache using VFET selector has been observed at the system level with Polybench workloads.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    3
    Citations
    NaN
    KQI
    []