Sparse-View Reconstruction in Dental Computed Tomography by Using a Dictionary-Learning Based Method
2019
In this study, we investigated sparse-view reconstruction in dental computed tomography (DCT) by using a dictionary-learning (DL)-based method to reduce excessive radiation dose to patients. In sparse-view DCT, only a small number (< 100) of projections, far less than what is required by the Nyquist sampling theory, are acquired from the imaging system and used for image reconstruction. DL is a representation learning theory that aims to find a sparse representation of the input signal in the form of a linear combination of basic elements (or atoms). We implemented a DL-based reconstruction algorithm and performed a systematic simulation and an experiment to evaluate the algorithm’s effectiveness for sparse-view reconstruction in DCT. DCT images were reconstructed using the three sparse-view projections of P30, P40, and P60, and their image qualities were quantitatively evaluated in terms of the intensity profile, the universal quality index, and the peak signal-to-noise ratio. The hardware system used in the experiment consisted of an X-ray tube, which was run at 90 kVp and 40 mA, and a flat-panel detector with a 388-μm pixel size. Our simulation and experimental results indicate that the DL-based method significantly reduced streak artifacts in the sparse-view DCT reconstruction when using P40, thus maintaining image quality.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
14
References
0
Citations
NaN
KQI