Near infrared neuromorphic computing via upconversion-mediated optogenetics

2019 
Abstract Near infrared (NIR) synaptic devices offer a remote-control approach to implement neuromorphic computing for data safety and artificial retinal system applications. In upconverting nanoparticles (UCNPs)-mediated optogenetics biosystems, NIR regulation of membrane ion channels allows remote and selective control of the Ca2+ flux to modulate synaptic plasticity behaviors. Inspired by the upconversion optogenetics, we proposed a NIR artificial synapse based on a UCNPs-MoS2 floating gate phototransistor in which MoS2 acts as light-sensitive ion channels to reabsorb the visible light emitted from UCNPs under NIR illumination. As a result, the synaptic device exhibits stable persistent photocurrent (PPC) effect up to 353 K and ultrahigh photogain (~108 electrons per photon), ensuring the long-term potentiation (LTP) behavior. Simulations using the handwritten digit data sets indicate good recognition accuracy of the light-controlled artificial neuron network. Overall, this design concept combining biology, optics and electronics opens up a new avenue for developing optogenetics-inspired neuromorphic technology in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    14
    Citations
    NaN
    KQI
    []