Simultaneous Optical and Electrical Spin-Torque Magnetometry with Stroboscopic Detection of Spin-Precession Phase.

2019 
Spin-based coherent information processing and encoding utilize the precession phase of spins in magnetic materials. However, the detection and manipulation of spin precession phases remain a major challenge for advanced spintronic functionalities. By using simultaneous electrical and optical detection, we demonstrate the direct measurement of the precession phase of Permalloy ferromagnetic resonance driven by the spin-orbit torques from adjacent heavy metals. The spin Hall angle of the heavy metals can be independently determined from concurrent electrical and optical signals. The stroboscopic optical detection also allows spatially measuring local spin-torque parameters and the induced ferromagnetic resonance with comprehensive amplitude and phase information. Our study offers a route towards future advanced characterizations of spin-torque oscillators, magnonic circuits, and tunnelling junctions, where measuring the current-induced spin dynamics of individual nanomagnets are required.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    13
    Citations
    NaN
    KQI
    []