Microdiffraction Analysis of Hierarchical Dislocation Organization
2007
This article describes how x-ray microdiffraction is influenced by the number, kind, and organization of dislocations. Particular attention is placed on micro-Laue diffraction, where polychromatic x-rays are diffracted into characteristic Laue patterns that are sensitive to the dislocation content and arrangement. Diffraction is considered for various stages of plastic deformation. For early stages of plastic deformation with random dislocation spacing, the intensity in reciprocal space is redistributed about Laue spots with a length scale proportional to the number of dislocations within the sample volume and with a characteristic shape that depends on the kinds of dislocations and the momentum transfer vector. Unpaired dislocations that contribute to lattice rotations cause the largest redistribution of scattered intensity. In later stages of plastic deformation, strong interactions between individual dislocations cause them to organize into correlated arrangements. Here again, xray diffraction Laue spots are broadened in proportion to the number of excess (unpaired) dislocations inside the wall and to the total number of unpaired walls, but the broadening can be discontinuous. With microdiffraction it is possible to quantitatively test models of dislocation organization.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
27
References
20
Citations
NaN
KQI