Semiclassical mechanics of the Wigner 6j-symbol

2012 
The semiclassical mechanics of the Wigner 6j-symbol is examined from the standpoint of WKB theory for multidimensional, integrable systems to explore the geometrical issues surrounding the Ponzano?Regge formula. The relations among the methods of Roberts and others for deriving the Ponzano?Regge formula are discussed, and a new approach, based on the recoupling of four angular momenta, is presented. A generalization of the Yutsis type of spin network is developed for this purpose. Special attention is devoted to symplectic reduction, the reduced phase space of the 6j-symbol (the 2-sphere of Kapovich and Millson) and the reduction of Poisson bracket expressions for semiclassical amplitudes. General principles for the semiclassical study of arbitrary spin networks are laid down; some of these were used in our recent derivation of the asymptotic formula for the Wigner 9j-symbol.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    91
    References
    61
    Citations
    NaN
    KQI
    []