Characterization of carbaryl-degrading strain Bacillus licheniformis B-1 and its hydrolase identification.

2020 
Pesticides introduced inadvertently or deliberately into environment by anthropogenic activity have caused growing global public concern, therefore the search of approaches for elimination of such xenobiotics should be encouraged. A cypermethrin-degrading bacterial strain Bacillus licheniformis B-1 was found to efficiently degrade carbaryl in LB medium at concentrations of 50-300 mg L(-1) within 48 h, during which temperature and pH played important roles as reflected by increase in pollutant depletion. A stimulatory effect of Fe(3+) and Mn(2+) on microbial growth was observed, whereas Cu(2+) caused inhibition of degradation. Results showed that 1-naphthol was a major transformation product of carbaryl which was further metabolised. An approximately 29 kDa carbaryl-degrading enzyme was purified from B-1 with 15.93-fold purification and an overall yield of 6.02% was achieved using ammonium sulphate precipitation, DEAE-Sepharose CL-6B anion-exchange chromatography and Sephadex G-100 gel filtration. The enzyme was identified through nano reversed-phase liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry as a phosphodiesterase (PDE). This is the first report on the characterization of carbaryl-degrading by Bacillus spp. and the role of a PDE in carbaryl-detoxifying. Also, strain B-1 showed versatile in carbosulfan, isoprocarb and chlorpyrifos degradation, demonstrating as ideal candidate for environment bioremediation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    3
    Citations
    NaN
    KQI
    []