Thickness-Dependent Phonon Renormalization and Enhanced Raman Scattering in Ultrathin Silicon Nanomembranes

2017 
We report on the thickness-dependent Raman spectroscopy of ultrathin silicon (Si) nanomembranes (NMs), whose thicknesses range from 2 to 18 nm, using several excitation energies. We observe that the Raman intensity depends on the thickness and the excitation energy due to the combined effects of interference and resonance from the band-structure modulation. Furthermore, confined acoustic phonon modes in the ultrathin Si NMs were observed in ultralow-frequency Raman spectra, and strong thickness dependence was observed near the quantum limit, which was explained by calculations based on a photoelastic model. Our results provide a reliable method with which to accurately determine the thickness of Si NMs with thicknesses of less than a few nanometers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    9
    Citations
    NaN
    KQI
    []