Fuzzy AHP Application for Supporting Contractors’ Bidding Decision

2018 
This paper proposes the author’s model based on the Fuzzy Analytic Hierarchy Process (FAHP) to improve the efficiency of contractor bidding decisions. The essence of the AHP method is to make pairwise comparisons of available options against all evaluation criteria. The results of these comparisons are recorded in a square matrix in which symmetrical elements are reciprocal. In the expert opinion, a 9-step, bipolar verbal scale was used so that the symmetry of the response was maintained. For contractors from countries where the tendering system is commonly used, the choice of the right tender in which to participate influences their image, financial condition, and their aspiration to succeed. The bid/no bid decision depends on numerous factors associated with the company itself, the environment, and the project concerning the tender. When facing tough competition, contractors search for a solution which increases their chances of winning the tender. The proposed model was based on factors selected by Polish contractors. The original element of the model involves 4 original criteria and 15 sub-criteria for the assessment of investment decision projects to the selection of the most advantageous contract, i.e., the contractor’s participation in the bid. For verbal evaluations describing the criteria, symmetric triangular fuzzy numbers were assigned. The authors performed an extended analysis method combined with FAHP in the model. Fuzzy evaluations underwent elaborate analysis, the aim of which was to specify the synthetic priority weights for each criterion. As a result of the application of the method, to prove that the model works, an example from the Polish construction market was presented in which a bid/no bid decision about four possible tenders was to be taken. Despite the considered example applying to Polish conditions, the proposed model can be used also in other countries. The authors’ rationale is to produce new and more flexible methodologies in order to realistically model a variety of concrete decision problems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    40
    Citations
    NaN
    KQI
    []