Embedding of bulk piezoelectric structures in Low Temperature Co-fired Ceramic

2014 
It has been over a century since the Curie brothers discovered the piezoelectric effect. Since then our knowledge about this phenomena has been constantly growing, accompanied by a vast increase in its applications. Modern piezoelectric devices, especially those meant for use in personal equipment, can often have complicated shapes and electric circuits; therefore, a suitable and cost effective packaging method is needed. The recent introduction of self-constrained Low Temperature Co-fired Ceramic (LTCC) characterized by virtually no planar shrinkage has pushed the limits of this technology a step further. The practical lack of dimension change between “green” state and sintered ceramic has not only improved the design of multilayer smart packages but also allowed the embedding of other bulk materials within the LTCC and their co-firing in one sintering process. This thesis introduces a novel method of seamlessly embedding piezoelectric bulk structures in LTCC by co-firing or bonding with adhesive. Special attention is paid to the multistage lamination and post-firing poling of the piezoelectric ceramics. Examples of several structures from the main areas of piezoelectric applications are presented as proof of successful implementation of the new technique in the existing production environment. The performance of the structures is investigated and compared to structures manufactured using other methods. Integration of bulk piezoelectric structures through co-firing is a new technique with a wide area of applications, suitable for mass production using existing process flow.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []