Measurement error and variant-calling in deep Illumina sequencing of HIV

2019 
MOTIVATION: Next-generation deep sequencing of viral genomes, particularly on the Illumina platform, is increasingly applied in HIV research. Yet, there is no standard protocol or method used by the research community to account for measurement errors that arise during sample preparation and sequencing. Correctly calling high and low-frequency variants while controlling for erroneous variants is an important precursor to downstream interpretation, such as studying the emergence of HIV drug-resistance mutations, which in turn has clinical applications and can improve patient care. RESULTS: We developed a new variant-calling pipeline, hivmmer, for Illumina sequences from HIV viral genomes. First, we validated hivmmer by comparing it to other variant-calling pipelines on real HIV plasmid datasets. We found that hivmmer achieves a lower rate of erroneous variants, and that all methods agree on the frequency of correctly called variants. Next, we compared the methods on an HIV plasmid dataset that was sequenced using Primer ID, an amplicon-tagging protocol, which is designed to reduce errors and amplification bias during library preparation. We show that the Primer ID consensus exhibits fewer erroneous variants compared to the variant-calling pipelines, and that hivmmer more closely approaches this low error rate compared to the other pipelines. The frequency estimates from the Primer ID consensus do not differ significantly from those of the variant-calling pipelines. AVAILABILITY AND IMPLEMENTATION: hivmmer is freely available for non-commercial use from https://github.com/kantorlab/hivmmer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    19
    Citations
    NaN
    KQI
    []