The advantages of PD1 activating chimeric receptor (PD1-ACR) engineered lymphocytes for PDL1+ cancer therapy

2015 
Tumors exploit immunoregulatory checkpoints to attenuate T cell responses as a means of circumventing immunologic rejection. By activating the inhibitory costimulatory pathway of Programmed Death 1 (PD1)/PDL1 which provides tumor cells an escape mechanism from immune surveillance, Programmed Death Ligand1 (PDL1)+ tumors hamper activated tumor-specific T cell functions and render them functionally exhausted. To overcome the inhibitory costimulatory effects of PDL1 on the adoptively transferred T cells, we sought to convert PD1 to a T cell costimulatory receptor by exchanging its transmembrane and cytoplasmic tail with CD28 and 4-1BB signaling domains (PD1-CD28-4-1BB, PD1-ACR), anticipating the genetically modified effector T lymphocytes expressing PD1-ACR would exhibit enhanced functional attributes. And the results showed that PD1-ACR expressed T cells retained the ability to bind PDL1, resulting in T cell activation as evidenced by the elevated activity of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), the augmentation of cytokine secretion and the increased proliferative capacity. Moreover, when systemically administered in the mouse model of glioblastoma metastases, PD1-ACR T cells localized at the area of U87 invasive tumor, which results in suppressed tumor growth and enhanced survival of mice with established U87 glioblastoma. Together, these data demonstrated that PD1-ACR has a high potential to serve as a novel strategy to overcome PDL1 mediated immunosuppression of T cells for cancer therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    16
    Citations
    NaN
    KQI
    []