Golgi SM protein Sly1 promotes productive trans-SNARE complex assembly through multiple mechanisms

2020 
SNARE chaperones of the Sec1/mammalian Unc-18 (SM) family have critical roles in SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants, and a new in vitro assay of fusion, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) preferential nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and we present evidence that close-range tethering is particularly important for trans- complex assembly when cis-SNARE assembly is a competing process. In addition, the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: the Habc domain is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. Remarkably, "split Sed5," with the Habc domain present only as a soluble fragment, is functional both in vitro and in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    1
    Citations
    NaN
    KQI
    []