Hierarchically Structured Thermoelectric Materials in Quaternary System Cu–Zn–Sn–S Featuring a Mosaic-type Nanostructure

2018 
Multinary chalcogenide semiconductors in the Cu–Zn–Sn–S system have numerous potential applications in the fields of energy production, photocatalysis and nonlinear optics, but characterization and control of their microstructures remains a challenge because of the complexity resulting from the many mutually soluble metallic elements. Here, using state-of-the-art scanning transmission electron microscopy, energy dispersive spectroscopy, first-principles calculations and classical molecular dynamics simulations, we characterize the structures of promising thermoelectric materials Cu2(Zn,Sn)S3 at different length scales to gain a better understanding of how the various components influence the thermoelectric behavior. We report the discovery of a mosaic-type domain nanostructure in the matrix grains comprising well-defined cation-disordered domains (the “tesserae”) coherently bonded to a surrounding network phase with semiordered cations. The network phase is found to have composition Cu4+xZnxSn2S7, a previ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    11
    Citations
    NaN
    KQI
    []