A Fast Point Clouds Registration Algorithm for Laser Scanners
2021
Point clouds registration is an important step for laser scanner data processing, and there have been numerous methods. However, the existing methods often suffer from low accuracy and low speed when registering large point clouds. To meet this challenge, an improved iterative closest point (ICP) algorithm combining random sample consensus (RANSAC) algorithm, intrinsic shape signatures (ISS), and 3D shape context (3DSC) is proposed. The proposed method firstly uses voxel grid filter for down-sampling. Next, the feature points are extracted by the ISS algorithm and described by the 3DSC. Afterwards, the ISS-3DSC features are used for rough registration with the RANSAC algorithm. Finally, the ICP algorithm is used for accurate registration. The experimental results show that the proposed algorithm has faster registration speed than the compared algorithms, while maintaining high registration accuracy.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
19
References
0
Citations
NaN
KQI