Enterotoxigenic Bacteroides fragilis Promotes Intestinal Inflammation and Malignancy by Inhibiting Exosome-Packaged miR-149-3p

2021 
Background & Aims Enterotoxigenic Bacteroides fragilis (ETBF) is strongly associated with the occurrence of inflammatory bowel disease (IBD), colitis-associated colorectal cancer, and colorectal cancer (CRC). However, the mechanism of ETBF-induced intestinal inflammation and tumorigenesis remains unclear. Methods microRNA sequencing was used to detect the differentially expressed microRNAs in both ETBF-treated cells and exosomes derived from ETBF-inoculated cells. Cell Counting Kit 8 assays were used to evaluate the effect of ETBF and exosomes on CRC cell proliferation. The biological role and mechanism of ETBF-mediated miR-149-3p in colitis and colon carcinogenesis were determined both in vitro and in vivo. Results ETBF promoted CRC cell proliferation by down-regulating miR-149-3p both in vitro and in vivo. ETBF–down-regulated miR-149-3p depended on METTL14-mediated N6-methyladenosine methylation. As the target gene of miR-149-3p, PHF5A transactivated SOD2 through regulating KAT2A messenger RNA alternative splicing after ETBF treatment in CRC cells. miR-149-3p could be released in exosomes and mediated intercellular communication by modulating T-helper type 17 cell differentiation. The level of plasma exosomal miR-149-3p was gradually decreased from healthy control individuals to patients with IBD and CRC. miR-149-3p, existing in plasma exosomes, negatively correlated with the abundance of ETBF in patients with IBD and CRC. Conclusions Exosomal miR-149-3p derived from ETBF-treated cells facilitated T-helper type 17 cell differentiation. ETBF-induced colorectal carcinogenesis depended on down-regulating miR-149-3p and further promoting PHF5A-mediated RNA alternative splicing of KAT2A in CRC cells. Targeting the ETBF/miR-149-3p pathway presents a promising approach to treat patients with intestinal inflammation and CRC with a high amount of ETBF.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    4
    Citations
    NaN
    KQI
    []