Pressure waves generated by metastable intermolecular composites in an aqueous environment

2014 
In the present study, pressure waves generated by a metastable intermolecular composite (MIC) have been measured experimentally in an aqueous environment and correlated with flame speed measurements. Underwater experiments were performed in a 1.0 L high-pressure chamber mounted with high-resolution pressure transducers and designed with optical access. Samples consisting of a stoichiometric mixture of aluminium and copper(II)-oxide particles were evaluated. Two types of samples were synthesized; a mixture of micron-sized raw powders, and ball-milled powders with a fine-scale nano-structure. A planetary mill was used to refine reactant powders from micron- to nano-scale dimensions. The dynamics of the pressure wave and high-pressure gas bubble were monitored via pressure histories and high-speed Schlieren visualization. The effect of reactant particle size has been evaluated quantitatively. The dynamics of the pressure wave were correlated with the rate of expansion of the high-pressure gas bubble.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []