Insights into the Bond Behavior and Mechanical Properties of Hafnium Carbide under High Pressure and High Temperature.

2020 
Hafnium carbide (HfC) is a potential candidate of ultrahigh-temperature ceramics (UHTCs) and has attracted significantly widespread interest in recent years. Here, we have synthesized high-purity HfC samples with NaCl-type structure by using a high-pressure solid-solid reaction. The structural stability, equation of state, plastic deformation, yield strength, and bonding properties under high pressure are investigated by a series of in situ high-pressure synchrotron-radiation angle-dispersive X-ray diffraction experiments combined with first-principles calculations. The yield strength of HfC (∼18 GPa) is obtained from analyzing the plastic deformation behavior under high pressure. In addition, we have successfully prepared bulk HfC ceramics with high density using a high-pressure and high-temperature method. The synthesized sample possesses a desirable Vickers hardness of 24.2 GPa and an excellent fracture toughness of 5.0 MPa·m1/2. The present results offer insights into the achievable application of HfC ceramics under extreme conditions and provide a powerful guide for the further design and synthesis of other high-performance UHTCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    5
    Citations
    NaN
    KQI
    []