Breuil's classification of $p$-divisible groups over regular local rings of arbitrary dimension
2008
Let $k$ be a perfect field of characteristic $p \geq 3$. We classify $p$-divisible groups over regular local rings of the form $W(k)[[t_1,...,t_r,u]]/(u^e+pb_{e-1}u^{e-1}+...+pb_1u+pb_0)$, where $b_0,...,b_{e-1}\in W(k)[[t_1,...,t_r]]$ and $b_0$ is an invertible element. This classification was in the case $r = 0$ conjectured by Breuil and proved by Kisin.
- Correction
- Cite
- Save
- Machine Reading By IdeaReader
2
References
1
Citations
NaN
KQI