Titanium dioxide (TiO2) nanoparticles reinforced polyvinyl formal (PVF) nanocomposites as chemiresistive gas sensor for sulfur dioxide (SO2) monitoring.

2021 
Abstract The present work reports the preparation of polyvinyl formal (PVF)/Titanium dioxide (TiO2) nanocomposite films using a solution casting method followed by the characterization of the synthesized PVF/TiO2 nanocomposite films using various analytical techniques namely FTIR, XRD, UV-vis, SEM and TGA analysis. The results obtained from different analyses confirmed that the TiO2 NPs was fine dispersed within the PVF matrix and there exists well compatibility among the polymer matrix and the nanofiller. The pristine TiO2 NPs based fabricated chemiresistive sensor exhibits the maximum sensitivity of 50.25% at 370 oC where as PVF/TiO2 nanocomposite sensor showed the enhanced sensitivity of 83.75% at a relatively low operating temperature of 150 oC towards 600 ppm sulfur dioxide (SO2) gas. The 25 wt% PVF/TiO2 nanocomposite film sensor exhibited good sensitivity (∼83.75%), selectivity, rapid response time (66 s)/recovery time (107 s), and long-term stability of 60 days for SO2 gas detection. The fabricated PVF/TiO2 nanocomposite film sensors in our work possesses the advantages of low power consumption, cost-effective, and distinguished sensing abilities for SO2 detection makes it possible for potential applications. Thus, the fabricated chemiresistive sensors based on TiO2 NPs reinforced PVF nanocomposites films are evaluated and experimental results to show an excellent behavior towards SO2 gas detection for industrial processes control and environmental monitoring applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    5
    Citations
    NaN
    KQI
    []