Specific Mismatch Recognition in Heteroduplex Intermediates by p53 Suggests a Role in Fidelity Control of Homologous Recombination

1998 
We demonstrate that wild-type p53 inhibits homologous recombination. To analyze DNA substrate specificities in this process, we designed recombination experiments such that coinfection of simian virus 40 mutant pairs generated heteroduplexes with distinctly unpaired regions. DNA exchanges producing single C-T and A-G mismatches were inhibited four- to sixfold more effectively than DNA exchanges producing G-T and A-C single-base mispairings or unpaired regions of three base pairs comprising G-T/A-C mismatches. p53 bound specifically to three-stranded DNA substrates, mimicking early recombination intermediates. The KD values for the interactions of p53 with three-stranded substrates displaying differently paired and unpaired regions reflected the mismatch base specificities observed in recombination assays in a qualitative and quantitative manner. On the basis of these results, we would like to advance the hypothesis that p53, like classical mismatch repair factors, checks the fidelity of homologous recombination processes by specific mismatch recognition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    119
    Citations
    NaN
    KQI
    []