Computational analysis of fluid flow and zonal deposition in ferrocyanide single-shell tanks. Ferrocyanide Safety Program

1993 
Safety of single-shell tanks containing ferrocyanide wastes is of concern. Ferrocyanide in the presence of an oxidizer such as NaNO{sub 3} or NaNO{sub 2} is explosively combustible when concentrated and heated. Evaluating the processes that could affect the fuel content of waste and distribution of the tank heat load is important. Highly alkaline liquid wastes were transferred in and out of the tanks over several years. Since Na{sub 2}NiFe(CN){sub 6} is much more soluble in alkaline media, the ferrocyanide could be dispersed from the tank more easily. If Cs{sub 2}NiFe(CN){sub 6} or CsNaNiFe(CN){sub 6} are also soluble in alkaline media, solubilization and transport of {sup 137}Cs could also occur. Transporting this heat generating radionuclide to a localized area in the tanks is a potential mechanism for generating a ``hot spot.`` Fluid convection could potentially speed the transport process considerably over aqueous diffusion alone. A stability analysis was performed for a dense fluid layer overlying a porous medium saturated by a less dense fluid with the finding that the configuration is unconditionally unstable and independent of the properties of the porous medium or the magnitude of the fluid density difference. A parametric modeling study of the buoyancy-driven flow due to amore » thermal gradient was combusted to establish the relationship between the waste physical and thermal properties and natural convection heat transfer. The effects of diffusion and fluid convection on the redistribution of the {sup 137}Cs were evaluated with a 2-D coupled heat and mass transport model. The maximum predicted temperature rise associated with the formation of zones was only 5{degrees}C and thus is of no concern in terms of generating a localized ``hot spot.``« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []